Incidence and Spread of Insects from Bucket Elevator Leg Boots

Dennis R. Tilley

Ph.D. Dissertation Defense

Wednesday, January 30, 2013

8:00 AM, SH 204

Comparing Elevators and Feed Mills

Elevators

- Receiving and storing large volumes of grain
- Elevate grain from an underground receiving pit to the top of the facility and distributed to different storage bins

Feed mills

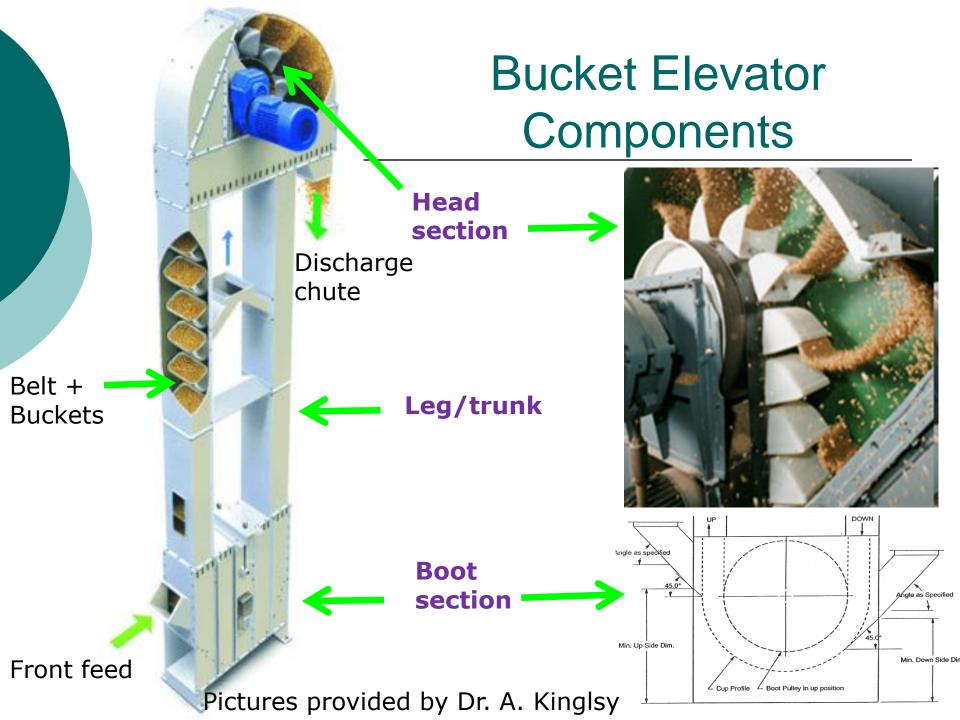
- Divided into various cost centers including: receiving, material processing, mixing, pelleting, packaging, warehousing, and loading
- Production areas are used to process raw grains and minor ingredients into feed materials

Elevator Leg, Boot, and Pit Areas

Elevator leg

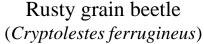
 Enclosed leg casing used to elevate grain to the top of a facility and discharge to other areas

Boot


- Enclosed base of an elevator leg casing where residual (static) grain accumulates after the first loading
- Provides an ideal habitat for insect population growth and development

Pit

- Area surrounding elevator boot and is usually located in a subterranean location
- If grain is allowed to accumulate, this becomes an ideal habitat for insect infestation


Boot and pit area

Stored-Product Insects Commonly Found in the Boot-pit Area

Red flour beetle (*Tribolium castaneum*)

Rice weevil (Sitophilus oryzae)

Good (1937) sampled 19 flour mills and found high densities of *T. castaneum*, *S. oryzae*, and *R. dominica* in the boot-pit area

Arthur (2006) found high densities of *S. oryzae*, *T. castaneum*, and *C. ferrugineus* in the boot-pit area

Rationale for the Study

- Grain elevator and feed mill facilities are ideal habitats for stored-product insect pests
 - Constant availability of abundant food sources
 - Shelter and relatively warm environments
- Previous grain elevator and feed mill insect pest surveys
 - Prior to flour mill facility fumigation, boot cleaning was recommended to manage insect pests in this area (Good, 1937)
 - Cleaning empty storage bins reduced insect population densities in discharge spouts (Reed et al., 2003)
 - Grain residue samples from the boot-pit and tunnel areas have high insect densities (Arthur et al., 2006)
 - Quality of sanitation practices were highly correlated with insect populations (Dowdy and McGaughey, 1998)

Rationale for the Study (continued)

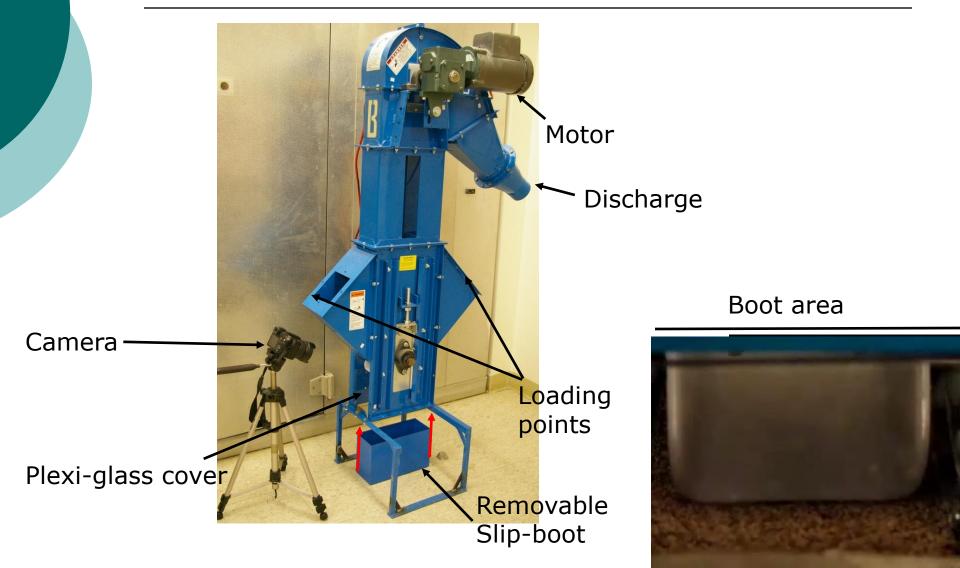
- Common sanitation practices in the elevator boot and pit area
 - Removal of residual grain
 - Residual insecticidal chemical spray applications
- Commercial grain elevator and feed mill facilities boot and pit areas contribute to commingling of insects with grain that moves through the elevator leg and could be a function of
 - Time
 - Initial density of insects infesting the boot-pit areas

Research Objectives

- 1. Measure the magnitude of insect commingling as a function of stored-grain insect density levels in wheat and corn using a modified pilot-scale bucket elevator leg
 - Identify the dynamics that can lead to the spread of infestations from the boot-pit area to other areas of a facility (bins)
 - Examine the impact of residual insecticide application to the boot on commingling insect densities
- 2. Determine temporal changes of stored-grain insect populations in commercial facilities (elevators and feed mills) over a two-year period

Research Objectives (continued)

3. Compare costs associated with a grain facility sanitation program


- Identifying the most cost effective and economical pest management practices for either a feed mill or an elevator facility
- Reduce risks associated with insect commingling in the boot and pit areas

Objective 1: Measurement of Insect Commingling

 Development of a novel slip-boot design for a bucket elevator leg

Laboratory tests using a pilot-scale bucket elevator leg

Pilot-scale Bucket Elevator Leg

Pilot-scale Bucket Elevator Leg (continued)

Grains tested

- Wheat
- Corn
- Insect densities
 - 0, 150, 300, 600 insects per kg
- Incubation time for infested boot: (time allowed for insect population development)
 - 0, 8, 16, 24 weeks
- Insecticide treated slip-boots
 - β-cyfluthrin sprayed at high label rate of 20 mg(AI)/m²
 - Slip-boots infested at the highest density level

Pilot-scale Bucket Elevator Leg (continued)

Discharge (transfer) grain was collected after transferring over an infested slip-boot

Discharge Grain was Processed Twice Through an Insectomat®

Repeat sieving after an 8-week incubation, allowing internal (hidden) insects to emerge.

In fe in

· Initial sieving - external insects collected

Clear

8-week sieving – internal insects collected

Pan containing sieved insects

Adult insects that commingled with the clean grain transfer were enumerated, after sieving

Insect Species (Boot residual grain)

Wheat:

Lesser grain borer (Rhyzopertha dominica)

Rusty grain beetle (*Cryptolestes ferrugineus*)

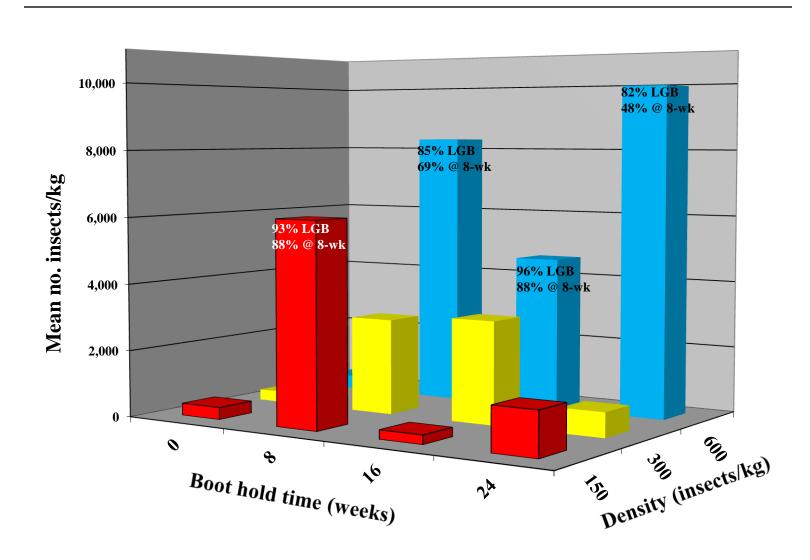
Red flour beetle (*Tribolium castaneum*)

Corn:

Rice weevil (Sitophilus oryzae)

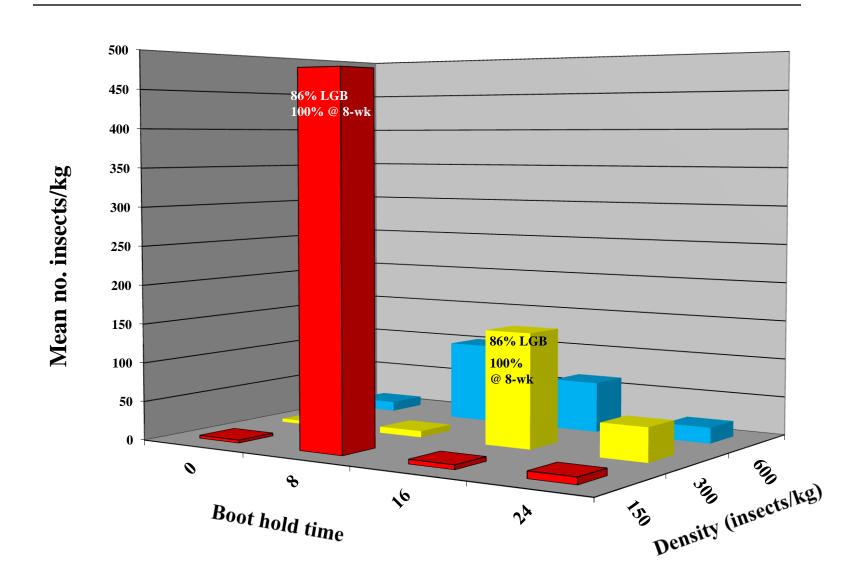
Sawtoothed Grain beetle (Oryzaephilus surinamensis)

Red flour beetle (*Tribolium castaneum*)

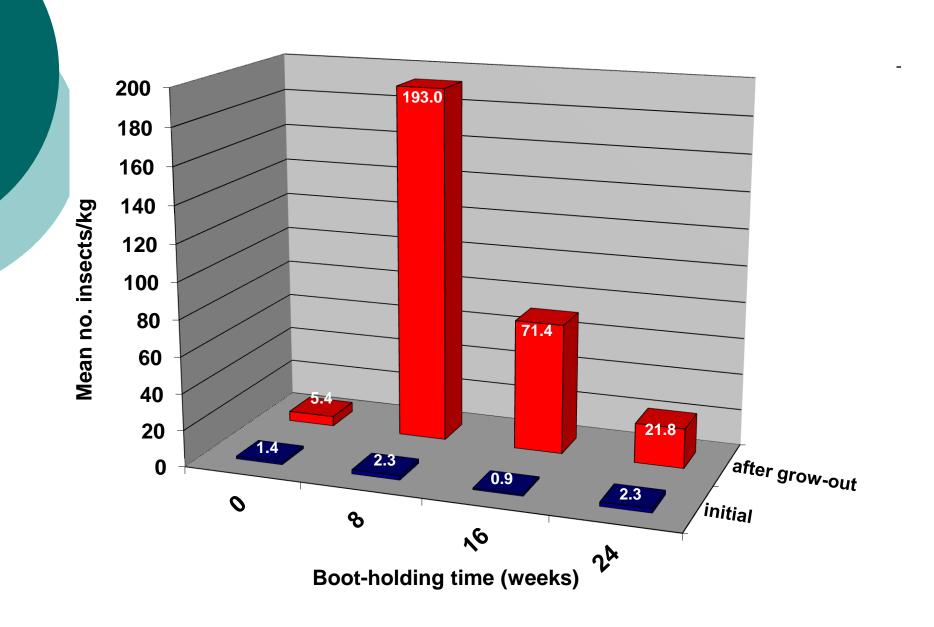

Two-way ANOVA for Wheat Samples

Location	Sieving period	Calendar period	<i>F</i> -value	df	<i>P</i> -value
Boot	Initial	Density	9.14	2, 24	0.0013*
		Boot hold time	8.84	3, 24	0.0003*
		Density x boot hold time	4.90	6, 24	0.0021*
	After 8 wk	Density	2.97	2, 24	0.0705
		Boot hold time	2.57	3, 24	0.0778
		Density x boot hold time	0.88	6, 24	0.5271
Transfer	Initial	Density	0.36	2, 24	0.2222
		Boot hold time	0.45	3, 24	0.3541
		Density x boot hold time	1.37	6, 24	0.4522
	After 8 wk	Density	1.57	2, 24	0.7034
		Boot hold time	1.28	3, 24	0.2522
		Density x boot hold time	1.45	6, 24	0.4559

^{*}Significant (P < 0.05)

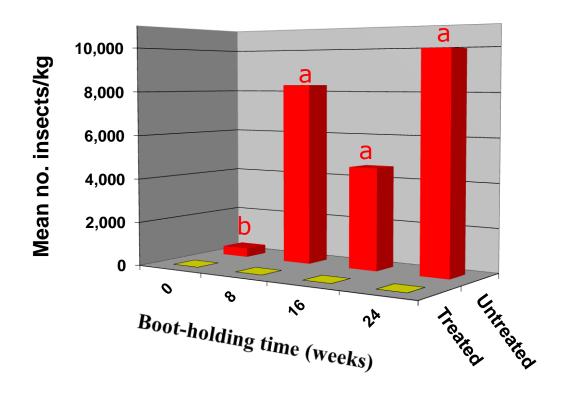

Wheat Boot

Insect counts after 8-wk of incubation



Wheat Transfer

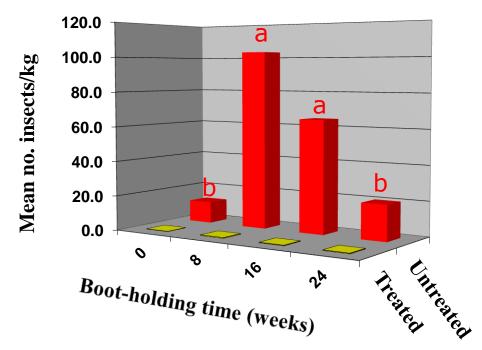
Insect counts after 8-wk of incubation



Insect Counts in Wheat

Chemical Spray Treatment

Insect counts in the wheat boot: Treated vs. Untreated



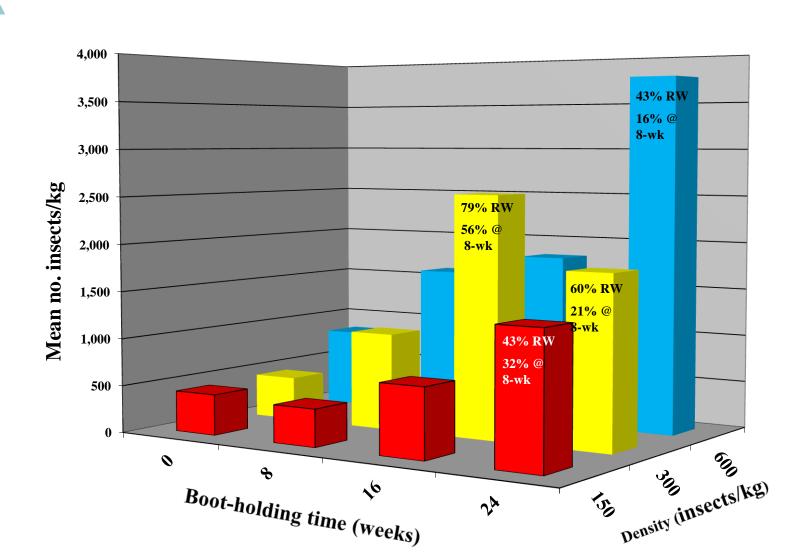
2-way ANOVA	F – value	df	p - value
Treatment	535.5	1, 16	0.0001*
Boot-hold time	5.29	3, 16	0.0100^*
Treatment x boot-hold time	4.71	3, 16	0.0153*

^{*}Significant (P < 0.05)

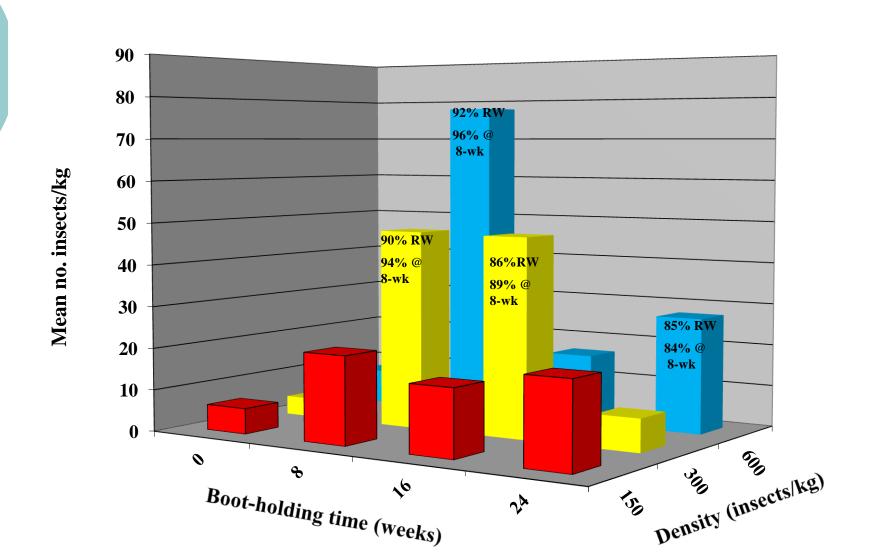
Chemical Spray Treatment

Insect counts in wheat transfers: Treated vs. Untreated

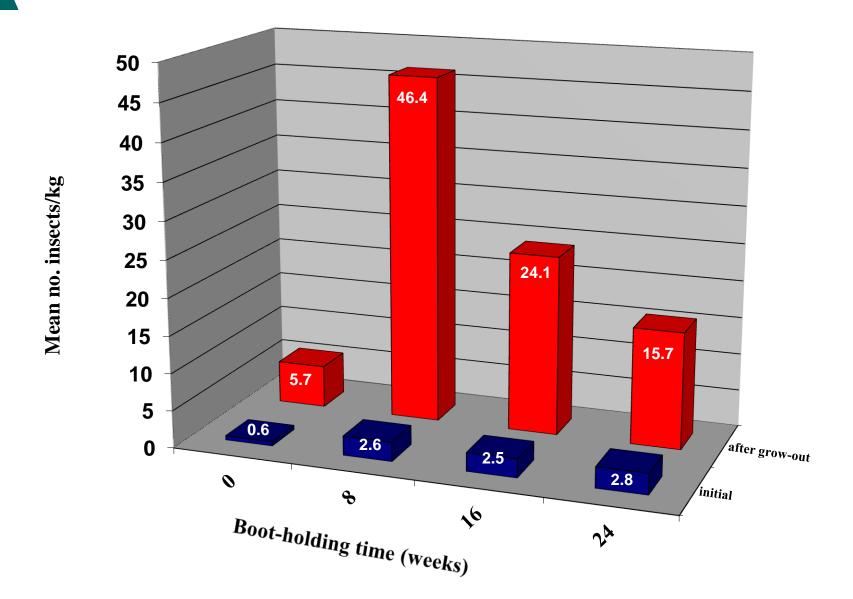
2-way ANOVA	F - value	df	p - value
Treatment	46.16	1, 16	0.0001*
Boot-hold time	0.56	3, 16	0.0005*
Treatment x boot-hold time	0.35	3, 16	0.0164*


^{*}Significant (P < 0.05)

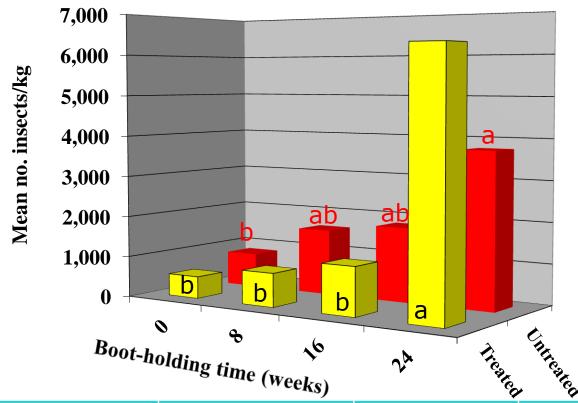
Two-way ANOVA for Corn Samples


Location	Sieving period	Source	F-value	df	<i>P</i> -value
Boot	Initial	Density	1.03	2, 24	0.3727
		Boot hold time	1.99	3, 24	0.1431
		Density * boot hold time	0.37	6, 24	0.8887
	After 8 wk	Density	3.40	2, 24	0.0500
		Boot hold time	2.77	3, 24	0.0634
		Density * boot hold time	1.75	6, 24	0.1529
Transfer	Initial	Density	0.69	2, 24	0.3976
		Boot hold time	1.09	2, 24	0.3715
		Density * boot hold time	0.75	6, 24	0.5557
	After 8 wk	Density	1.08	2, 24	0.5759
		Boot hold time	3.529	6, 24	0.0302*
		Density * boot hold time	0.75	6, 24	0.6566

^{*}Significant (P < 0.05)


Corn Boot Insect counts after 8-wk incubation

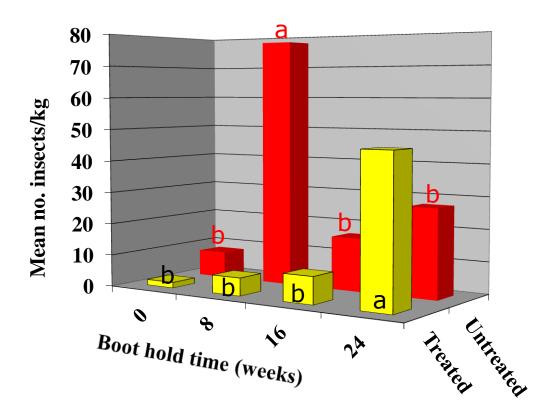
Corn Transfer Insect counts after 8-wk incubation



Insect Counts in Corn

Chemical Spray Treatment

Insect counts in the corn boot: treated vs. untreated



2-way ANOVA	F – value	df	p - value
Treatment	2.33	1, 16	0.1461
Boot-hold time	3.43	3, 16	0.0425*
Treatment x boot-hold time	2.24	3, 16	0.1232

^{*}Significant (P < 0.05)

Chemical Spray Treatment

Insect counts in the corn transfer: treated vs. untreated

2-way ANOVA	F - value	df	p - value
Treatment	9.77	1, 16	0.0065*
Boot-hold time	4.33	3, 16	0.0205*
Treatment x boot-hold time	2.85	3, 16	0.0705

^{*}Significant (P < 0.05)

Summary of Objective 1

- Insect density level in the boot affected the level of insects transferred through the elevator leg to other locations
- o Clean grain transferred over infested boots picked-up 1 insect/kg immediately after the transfer, increasing to 2 insects/kg after an 8-week incubation period
- Larger numbers of internally-developing insects were picked up by clean grain flowing over the infested boot, compared to the pick-up of externally developing insects

Summary of Objective 1 (continued)

- Residual insecticide (β-cyfluthrin) reduced insect densities in the boot and the number of insects picked-up by the buckets
- Application of residual insecticide should minimize insect densities and prevent cross contamination of clean grain by residual infested grain in boots

Objective 2: Temporal Changes of Stored-grain Insect Populations

- Survey of grain facilities:
 - 3 Elevators
 - 3 Feed mills

Survey of Facilities in Kansas

• Sampling locations:

- > 3 Elevator facilities
- > 3 Feed mill facilities

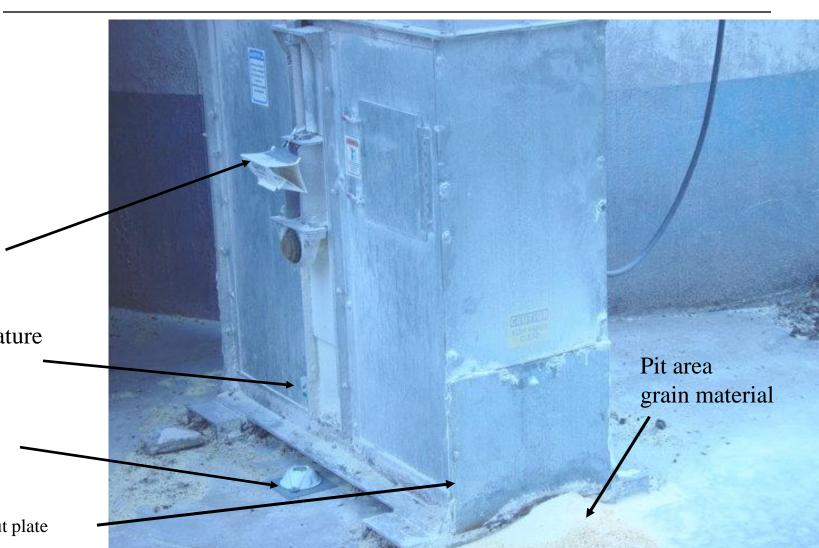
• Insect trapping and temperature monitoring:

- > Pit fall trap for crawling beetles
- Sticky trap for flying insects
- Hobo temperature logger

Processing of samples

➤ Boot, pit, and load-out areas

Insect Trapping and Temperature Monitoring


- * Dome insect trap.
- * Storgard Il insect trap.
- * HOBO temperature logger.

Sampling Points in the Boot-pit Area

Storgard ll Insect Trap

Hobo temperature logger

Dome Insect Trap

Boot Flanged Clean-out plate

Relative Abundance of Insect Species in Boot, Pit and Load-out by Facility Type

	% of total live adults in:			
	Elevators		Feed mills	
Species	2009	2010	2009	2010
C. ferrugineus	29.4	49.3	4.2	15.4
O. surinamensis	b	0.3	21.2	11.8
S. Oryzae	35.8	23.6	69.2	32.3
T. Castaneum	27.5	22.9	5.2	39.0
Minor spp. ^a	7.3	3.9	0.2	1.5
Total no. adults	1226	1257	6374	3450

^aMinor species not shown include: *A. advena, Carpophilus* spp., *L. oryzae, P. ratzeburgi, Philonthus* spp., *R. dominica, T. variabile*, and *T. stercorea*.

^bLive adult species were not found in the facility.

Relative Abundance of Insect Species in Pitfall Traps by Facility Type

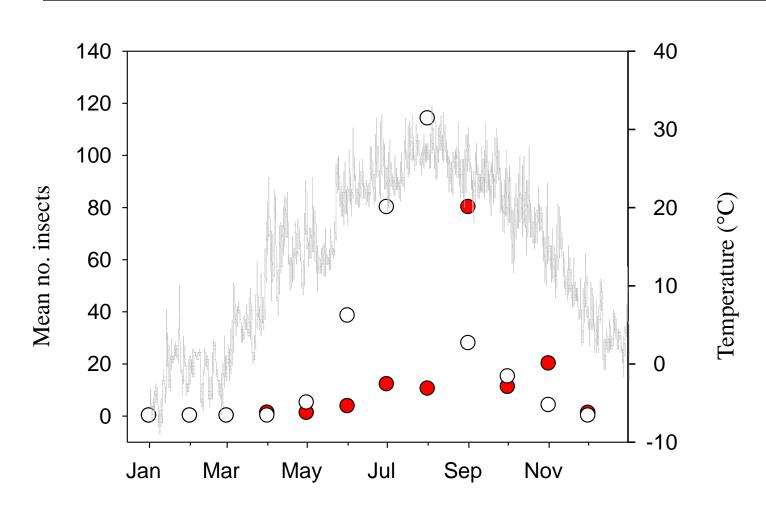
(boot pit area)

	% of total live adults in:a			
	Elevators		Feed	mills
Species	2009	2010	2009	2010
S. Oryzae	51.6	36.2	92.7	31.4
T. Castaneum	30.4	49.6	2.5	17.9
T. Variabile	0.1	41.5	0.4	4.9
Minor spp. ^b	17.6	9.3	4.7	9.2
Total no. adults	250	345	1833	1529

^aPheromone-baited pitfall traps for *Tribolium spp*.

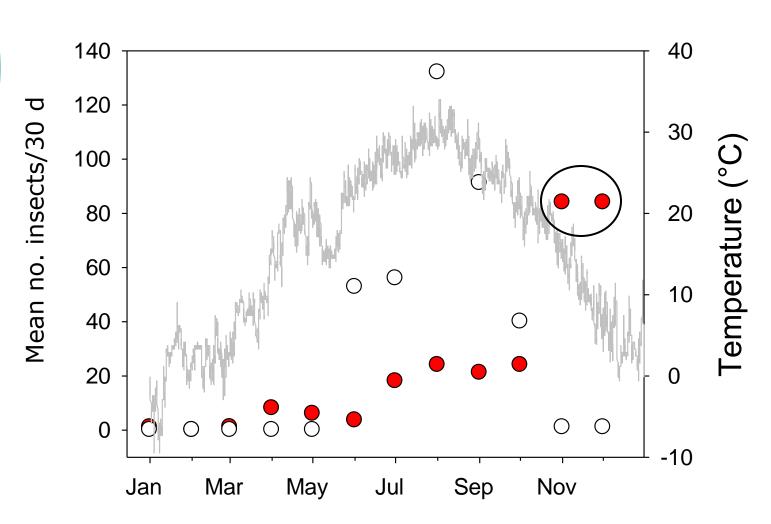
^bMinor species not shown include: *Cryptolestes* spp., *C. angustus*, *O. surinemensis*, P. ratzeburgi, and *T. molitor*.

Relative Abundance of Insect Species in Sticky Traps by Facility Type (boot pit area)

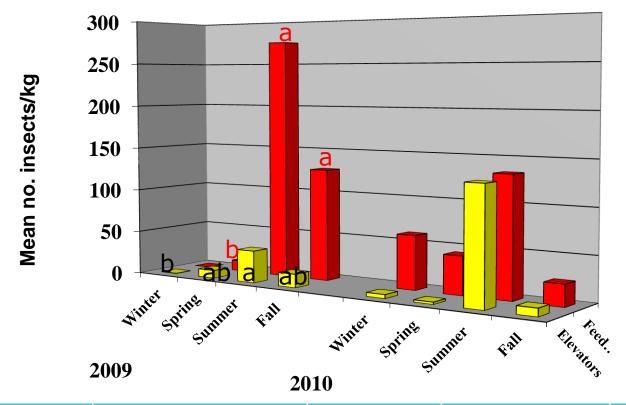

	% of total live adults in:a				
	Elevators		Elevators Feed mil		mills
Species	2009	2010	2009	2010	
P. Interpunctella	78.1	60.9	99.8	87.8	
R. Dominica	0.4	0.8	0.1	2.6	
T. variabile	21.5	38.3	0.1	9.6	
Total no. adults	1316	1774	1413	1273	

^aPheromone-baited sticky traps for *P. interpunctella*, *R. dominica*, and *T. variabile*.

Boot Seasonal Insect Counts and Temperature by Facility Type

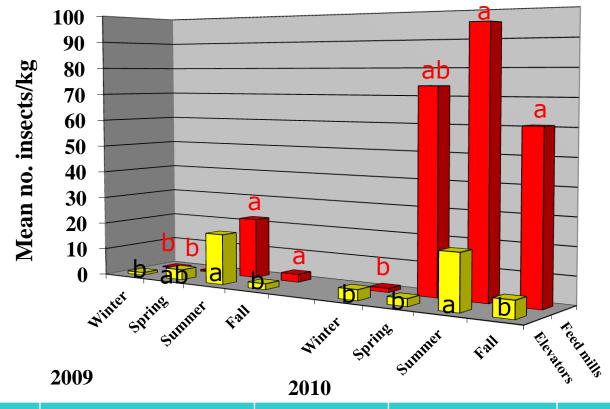

Facility type	Year	Season	Boot (no. insects)	Temperature (°C)
Elevator	2009	Winter	1.0 ± 0.6 b	$2.6 \pm 1.1b$
		Spring	3.8 ± 2.3 ab	$15.7 \pm 1.8a$
		Summer	$18.6 \pm 8.9a$	$19.6 \pm 1.3a$
		Fall	$2.2 \pm 1.6b$	4.2 ± 1.9 b
	2010	Winter	$3.9 \pm 2.9b$	0.3 ± 2.7 b
		Spring	$2.8 \pm 1.1b$	$18.7 \pm 2.1a$
		Summer	$20.0 \pm 4.9a$	$23.3 \pm 1.2a$
		Fall	6.3 ± 3.5 b	$8.9 \pm 20b$
Feed Mill	2009	Winter	0.3 ± 0.3 b	$5.7 \pm 0.0 \mathrm{d}$
		Spring	0.6 ± 0.3	$17.8 \pm 0.2b$
		Summer	$20.3 \pm 13.2a$	$23.5 \pm 1.0a$
		Fall	$3.0 \pm 2.1a$	$9.2 \pm 0.8c$
	2010	Winter	$1.5 \pm 0.8b$	2.5 ± 0.7 d
		Spring	$73.7 \pm 44.7ab$	19.2 ± 0.7 b
		Summer	$95.4 \pm 34.9a$	$26.3 \pm 0.6a$
		Fall	$60.7 \pm 13.3a$	$11.1 \pm 0.2c$

Adult Insect Counts from Feed Mill A Pitfall and Sticky traps (2010)

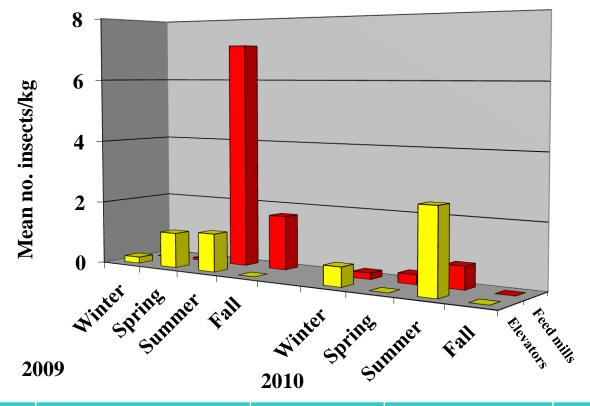

Solid (red) marker is pitfall traps and open circles are sticky traps.

Adult Insect Counts from Feed Mill B Pitfall and Sticky Traps (2010)

Solid (red) marker is pitfall traps and open circles are sticky traps.

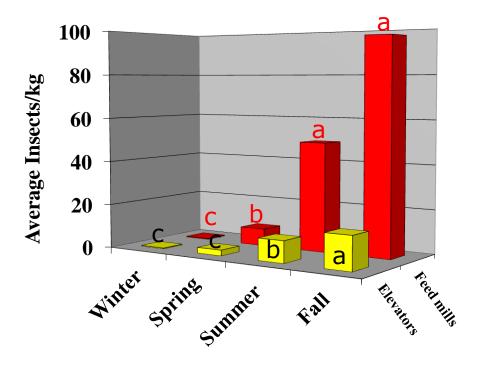

Seasonal Average Insect Densities — Pit Area

Facility type	Calendar period	F-value	df	<i>P</i> -value
Elevators	Year	1.87	1, 64	0.7378
	Seasons	9.24	3, 64	0.0002*
	Year x seasons	1.50	3, 64	0.9316
Feed Mills	Year	0.23	1, 61	0.1326
	Seasons	11.65	3, 61	0.0002*
	Year x seasons	6.81	3, 61	0.0005*


^{*}Significant (P < 0.05)

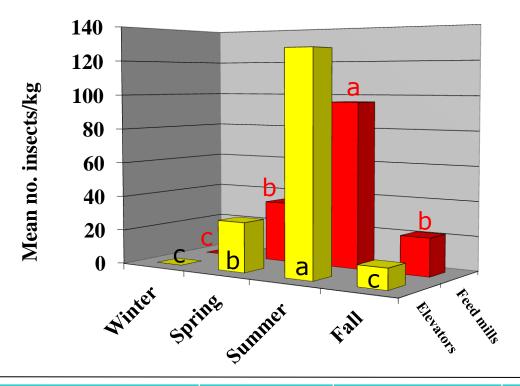
Seasonal Average Insect Densities — Boot Area

Facility type	Calendar period	<i>F</i> -value	df	<i>P</i> -value
Elevators	Year	0.11	1, 64	0.1763
	Seasons	7.41	3, 64	0.0002
	Year x seasons	0.15	3, 64	0.2290
Feed Mills	Year	30.47	1, 61	0.0001
	Seasons	6.71	3, 61	0.0005
*Significant ($P < 0.05$)	Year x seasons	0.21	3, 61	0.0553


Seasonal Average Insect Densities — Load-out Area

Facility type	Calendar period	<i>F</i> -value	df	<i>P</i> -value
Elevators	Year	1.25	1,40	0.2528
	Seasons	1.71	3, 40	0.1800
	Year x seasons	0.25	3, 40	0.7582
Feed Mills	Year	2.32	1, 33	0.6347
	Seasons	0.64	3, 33	0.0807
*Significant ($P < 0.05$)	Year x seasons	2.67	2, 33	0.8111

Adult Insect Species Collected from Pitfall Traps


located in the pit area of 3 elevator and 3 feed mill facilities during 2009-10

Facility type	Calendar period	<i>F</i> -value	df	<i>P</i> -value
Elevators	Year	0.03	1,58	0.5463
	Seasons	7.61	3, 58	0.0002
	Year x seasons	0.61	3, 58	0.1251
Feed Mills	Year	2.05	1,57	0.1034
	Seasons	10.89	3, 57	0.0001
*Significant $(P < 0.05)$	Year x seasons	0.19	3, 57	0.8724

Adult Insect Species Collected from Sticky Traps

located in the pit area of 3 elevator and 3 feed mill facilities during 2009-10

Facility type	Calendar period	<i>F</i> -value	df	<i>P</i> -value
Elevators	Year	0.37	1, 58	0.8576
	Seasons	31.47	3, 58	0.0002
	Year x seasons	1.99	3, 58	0.6143
Feed Mills	Year	2.74	1, 57	0.1582
	Seasons	23.35	3, 57	0.0001
*Significant ($P < 0.05$)	Year x seasons	0.23	3, 57	0.9026

Summary of Objective 2

- Weevils (*S. oryzae*) were the most prevalent insect pests collected
- Other commonly collected insect species included: *T. castaneum*, *C. ferrugineus*, and *O. surinamensis*
- Boot and pit cleaning is critical in preventing pest population explosions during the warm summer months

Objective 3: Economic Analysis of Insect Commingling

Development of a partial budget:

- Budget for only one part of the facility
- Framework of a planning and decision-making process
- Compare costs and benefits of a feed mill and elevator operation

Development of a stochastic dominance model

- Compares relative risk levels between alternatives
- A framework useful for decision-making process
- Used to compare alternative risky choices

Partial Budget Analysis

 Planning and decision-making framework used to compare costs and benefits of a business decision

- Typically four categorical parts
 - Additional income
 - Reduced costs
 - Reduced income
 - Additional costs

Partial Budget Analysis

costs and income associated with commingling insect levels in an elevator leg boot following a chemical spray treatment

Added income	Amount	Added costs	Amount
Grain discounts (\$0.08 per bu.)	\$17.70	Labor (\$12.50/h x 0.5 h)	\$6.25
Transportation (rejected load, \$0.038 per bu.)	\$8.97	Chemical spray (per slip-boot)	\$2.18
Reduced costs	Amount	Reduced income	Amount
None		None	
Subtotal	\$26.67	Subtotal	\$8.43

Net change: \$18.24 (subtotal from column 1 minus subtotal from column 2) or approximately 0.08 cents per bushel.

Partial Budget Analysis

Costs and income associated with commingling insect levels in an elevator leg boot loaded with insect-free grain

Added income	Amount	Added costs	Amount
Grain discounts (\$0.102 per bu.)	\$23.99	Labor (\$12.50/h x 0.5 h)	\$6.25
Transportation (rejected load, \$0.038 per bu.)	\$8.97		
Reduced costs	Amount	Reduced income	Amount
None		None	
Subtotal	\$32.96	Subtotal	\$6.25

Net change: \$26.71 (subtotal from column 1 minus subtotal from column 2) or approximately 11.3 cents per bushel.

Stochastic Dominance Modeling

 Means of comparing alternative risky choices are separated into two groups, those that should not be taken because they are dominated by or are less preferred to a second group which is not dominated

Types of Stochastic Dominance

- First Degree (FSD, more is preferred to less)
- Second degree (SSD, more discriminating and assumes the decisionmaker is risk averse)
- With respect to a function (decision-maker is absolute risk averse with upper and lower boundaries)

Stochastic Dominance Modeling

- A PC based program performed FSD, SSD, and SD with respect to a function, and analyzed risk associated with insects harboring in the boot (Goh et al., 1989)
- Input data was from applied grain (corn and wheat) discounts
 - Grain quality factors
 - Live adult insect counts
 - Insect damaged kernels

Stochastic Dominance Modeling

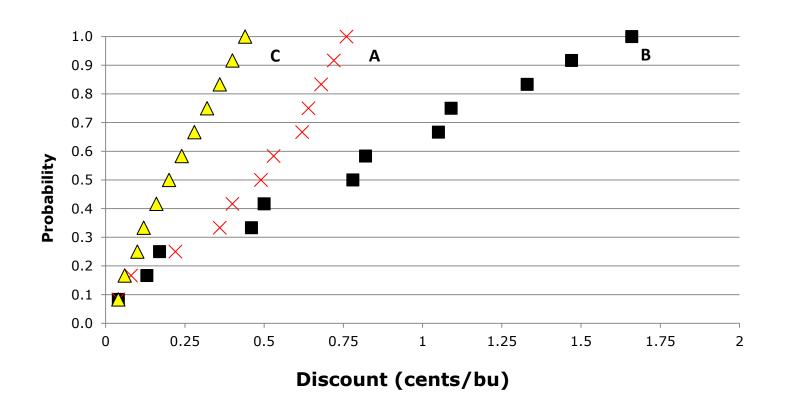
Applied corn quality discounts were from:

- Moisture Content (MC)
- Test Weight (TW)
- Broken Corn and Foreign Material (BCFM)
- Total damage material
- Number of adult insects/kg of grain.

Applied wheat quality discounts were from:

- Moisture Content (MC)
- Test Weight (TW)
- Shrunken and Broken Kernels
- Total damage material
- Insect Damage Kernels (IDK)
- Number of adult insects/kg of grain.

Risk Analysis of Wheat Quality Discounts Stochastic Dominance Modeling

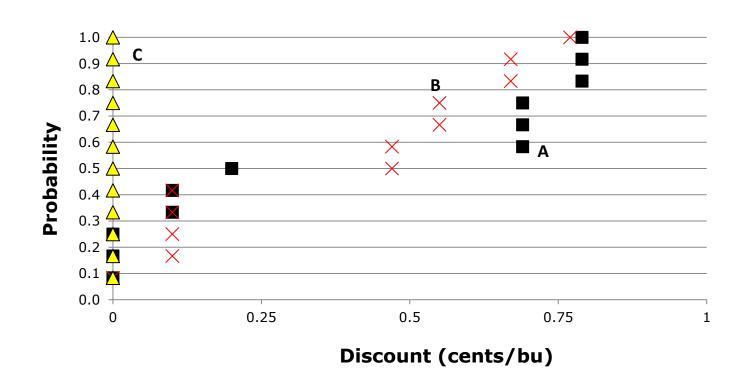

		Applied wheat quality mean discounts (cents/bu)								
Density (insects/kg)	MC	TW	FM	S&B	Damage	IDK	Insects	Discounts (cents/bu)		
	Insect-free and untreated slip-boots (A)									
0	0	0.04	0	0	0	0	0	0.04		
		Infe	sted ar	ıd untr	eated slip-bo	oots (B))			
600	0	0.05	0	0	0.04	0	0.05	0.14		
Infested and insecticidal spray treated slip-boots (A)										
600	0	0.04	0	0	0.02	0	0	0.06		

Risk Analysis of Corn Quality Discounts Stochastic Dominance Modeling

		Applied corn quality mean discounts (cents/bu)							
Density (insects/kg)	MC	TW	BCFM	Damage	Weevil infested	Discounts (cents/bu)			
Insect-free and untreated slip-boots (A)									
0	0	0	0	0	0	0.00			
Infested and untreated slip-boots (B)									
600	0.04	0	0	0	0.03	0.07			
Infested and insecticidal spray treated slip-boots (B)									
600	0.02	0.01	0	0.01	0.03	0.06			

Risk Analysis of Wheat Quality Discounts

Stochastic Dominance Modeling


A: Infested and insecticidal spray treated slip-boots

B: Infested and untreated slip-boots

C: Control: insect-free and untreated slip-boots

Risk Analysis of Corn Quality Discounts

Stochastic Dominance Modeling

A: Infested -insecticidal spray treated slip-boots

B: Infested and untreated slip-boots

C: Control: insect-free and untreated slip-boots

Summary of Objective 3

- Partial budget analysis and S-D risk modeling indicate that boot sanitation every 30 days avoids costly grain discounts and is the preferred choice by operators and managers of elevator and feed mill facilities
- Boot sanitation always had lower insect pest populations in the boot residual grain, providing higher facility operational net income without the use of chemicals

Conclusions

- New facility pest management sanitation guidelines of the boot and pit area include:
 - Boot residual grain clean-out every 30 days
 - Removal of grain spillage and floor sweepings from pit area
 - Proper disposal of boot and pit residual grain
- These guidelines could be used to improve elevator and feed mill insect pest management programs
- Slip-boot design could easily be adapted to bucket elevator leg design, improving boot sanitation and reducing operational costs

Acknowledgments

- Dr. Bhadriraju Subramanyam
- Dr. Mark E. Casada
- Dr. Frank Arthur
- Dr. Michael Langemeier
- Dr. Jeff Gwirtz
- Dr. Sherry Fleming
- The Andersons Research Grant Program Team Competition
- Mr. Kevin Hamm
- Mr. Nathan Goetzinger
- Patricia, Brandon, Robbie, and K'Lynn
- In Remembrance of my Mom and Dad

Thank you!

Questions